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Abstract 

Alzheimer’s disease (AD) is a neurodegenerative disease which has been proposed to be associated 

with brain iron abnormalities, although this remains contentious. To investigate the broad 

hypothesis that increased brain iron levels may exacerbate Alzheimer’s amyloid pathology, this 

project studied a novel mouse model (the ‘Aβ+Iron model’). This model was developed by cross-

breeding the APPswe/PS1∆E9 mouse model of amyloidosis (the ‘Aβ model’) with the Hfe-/-xTfr2mut 

mouse model of the iron loading disorder haemochromatosis (the ‘Iron model’) and backcrossing 

onto the AKR background strain to maximize iron loading.   

Brain iron content by non-haem iron assay of homogenised brain hemispheres at 6 months of age 

showed substantial iron loading in Aβ+Iron mice compared to age-, gender- and strain-matched Aβ 

mice  (fold change ≥ 1.8, p<0.0001, n ≥11 mice/group, with ≥4 per sex in each group). Likewise the 

relative intensity of 3,3'-diaminobenzidine-4HCl (DAB)-enhanced Perls’ staining for iron was 

significantly increased in Aβ+Iron mice compared to Aβ mice (fold change 1.7, p<0.0001, n=4 

mice/group).  

Since the Iron model does not express human Aβ, it would not be generally predicted to have 

classical amyloid. This model was used to assess whether abnormal mouse Aβ deposition could be 

induced by the presence of increased brain iron levels even though this model does not contain any 

human Aβ sequence. As expected, classical amyloid with Congo red birefringence under polarised 

light was not observed in the Iron model. These mice produce only endogenous murine Aβ which is 

not likely to aggregate and form plaques (i.e model does not express human Aβ), suggesting 

increased brain iron levels alone are not sufficient to induce amyloid formation in the absence of 

amyloid-related mutations. Histological labelling with Congo red stain for amyloid alone or in 

combination with DAB-enhanced Perls’ stain for iron was used to examine whether increased brain 

iron levels altered amyloid deposits in the Aβ and Aβ+Iron transgenic models. No differences were 

observed for mean counts and size distribution of amyloid deposits, amyloid burden or amyloid 

density across matched Bregma (-2.46 to -3.16) in Aβ+Iron compared to Aβ mice (all p>0.05, n=4 

mice/group). This Bregma range includes hippocampal and entorhinal cortex regions strongly 

affected in AD. 

An increased proportion of amyloid plaques had observable iron labelling in the Aβ+Iron model, in 

which 99.25% of detected plaques co-localised with DAB-enhanced Perls’ stainable iron compared 

to 81.09% in the Aβ model (p=0.0016, n=4 mice/group). Likewise, iron labelling around plaques 

was stronger in the Aβ+Iron model than the Aβ model, based on the ImageJ Transformed Mean 

Gray Value, a measure of staining intensity, of the iron halos surrounding the Congo red plaque 
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cores (fold change 1.4, p=0.0456, n=4 mice/group). However there was no difference in the mean 

area of the halos surrounding plaques between the two models (p=0.1007, n=4 mice/group).  

Co-labelling was also performed for iron (DAB-enhanced Perls’ stain) and Aβ peptide using 

antibody 4G8. This antibody, in addition to classical Aβ amyloid that is birefringent under polarised 

light, also detects other forms of insoluble Aβ peptide deposits. Antibody 4G8 and iron generally 

co-localised closely, with detectable iron usually though not always restricted to the 4G8 

immunolabelled region.  

In general, there were more amyloid plaques in brain areas with less iron staining compared to areas 

with high iron staining (correlation coefficient -0.97). For example, few if any amyloid plaques 

were detected in basal ganglia and thalamus with strong iron staining compared to regions such as 

the hippocampus and entorhinal cortex. 

Overall, regional and cellular distributions of iron in the Aβ+Iron model were similar to those in the 

Iron model with the important exceptions that iron co-localised with amyloid plaques in the 

Aβ+Iron model and iron-laden cells were present in the immediate vicinity of plaques. Iron staining 

was most conspicuous in the choroid plexus by all methods used (DAB-enhanced Perls’ stain and 

traditional or perfusion Turnbull stain for ferrous iron). Neurons contained very little stainable iron 

in any region examined, including hippocampus, cerebral cortex and midbrain. Co-labelling with 

DAB-enhanced Perls’ stain and Luxol fast blue stain or a myelin-specific marker 2’, 3’-cyclic-

nucleotide 3’-phosphodiesterase (CNPase) revealed substantial amounts of iron in myelinated 

regions. Ferritin heavy and light chain immunolabelling co-localised with DAB-enhanced Perls’ 

stain in a subset of myelin-associated cells with the morphology of oligodendroglial ‘trains’, 

consistent with previous literature demonstrating iron in a subset of oligodendroglia in rodents and 

humans. 

 

Brain regions with numerous glial fibrillary acidic protein (GFAP) labelled astrocytes typically had 

few iron-laden cells, with few if any cells co-labelled for both GFAP and iron. Likewise regions 

with increased iron accumulation typically contained few astrocytes, suggesting there was little 

reactive astrogliosis in areas with increased iron accumulation, and little if any reactive astrogliosis 

was observed around amyloid plaques.  

 

The proportion of plaques surrounded by iron-laden cells resembling activated amoeboid microglia 

or microglia transitioning into activation states was much greater in the Aβ+Iron model compared 

to the Aβ model (22% as opposed to 77%), suggesting iron may exacerbate microgliosis in response 
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to Aβ. This is potentially important since microglial activation appears to facilitate clearance of 

amyloid, although excessive accumulation of iron could eventually wind up damaging or killing 

microglia and weakening the brain’s defensive responses. 

 

Additional studies are required to investigate these possibilities since few if any cells co-labelled for 

both iron and the ionized calcium-binding adapter molecule 1 (Iba1), a marker for microglia and 

while Iba1 positive microglia were present in the immediate vicinity of iron-amyloid complexes, 

these did not co-label for iron, although reduced sensitivity of double and triple labelling procedures 

cannot be ruled out. There was no difference in the average count of Iba1-positive microglia in the 

vicinity of plaques between the Aβ+Iron and Aβ models (p=0.4073, n=4 mice/group). 

 

There was limited preliminary evidence of oxidative damage in the Aβ+Iron model. While no 

labelling was detected in any model for 8-hydroxy-2'-deoxyguanosine (8-OHdG), which detects 

DNA oxidation damage, there was some putative positive but very weak immunolabelling in all 

models for lipid peroxidation damage as assessed by 4-hydroxynonenal (4-HNE) antibody that 

appeared slightly stronger in the Aβ+Iron and Aβ models but this also needs to be confirmed in 

further studies.  

Increased levels of iron did not seem to increase neuronal loss in preliminary studies with neuronal 

nuclear (NeuN) antibody labelling. Specifically there was no significant decrease in relative 

neuronal counts per unit area at matched Bregma in the Aβ+Iron model compared to the Aβ model 

in the full cerebral hemisphere, excluding the cerebellum (p=0.3331, n=4 mice/group, one-tailed t 

test).  

In summary, these results confirm that brain iron levels are increased in the Aβ+Iron model at 6 

months of age and that iron co-localises with amyloid in this model but does not appear to affect 

measures of amyloid load. Although there was some preliminary evidence of lipid peroxidation 

damage and increased levels of ferrous iron in a few areas with high levels of iron by DAB-

enhanced Perls’ staining, amyloid formation was usually not observed in these regions and no 

neuronal death was observed across the cerebral hemisphere.  

Several protective mechanisms may be involved. Most iron appears to remain sequestered within 

myelin, oligodendroglia or other unidentified glia, with neurons containing little if any Perls’ 

stainable iron. Cells morphologically resembling transitional or activated amoeboid microglia 

appear to take up iron in the vicinity of amyloid plaques and may also have protective roles but 

these were not confirmed to be microglia by Iba1 labelling and remain unidentified.     
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This study has provided new insights into the nature of the relationship of iron and AD. The 

findings suggest that surplus iron may be safely sequestered by normal brain iron homeostatic and 

storage mechanisms and may not appreciably influence Alzheimer’s disease pathogenesis at least in 

the earlier stages of the disease course corresponding to the period examined in the present study. In 

the light of these observations, the low levels of neuronal iron and the possibility that at least 

initially, iron may be important in increasing activation of microglia around plaques, facilitating 

amyloid clearance, iron chelation may be potentially deleterious, at least in the early stages of 

disease and extreme caution should be exercised before pursuing clinical trials or recommending 

iron chelation as a treatment for AD and other neurodegenerative conditions.   

  


